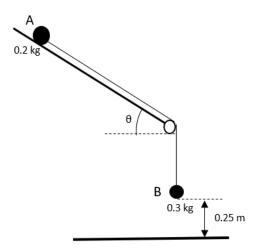
Cambridge International AS & A Level

Mathematics

9709/42

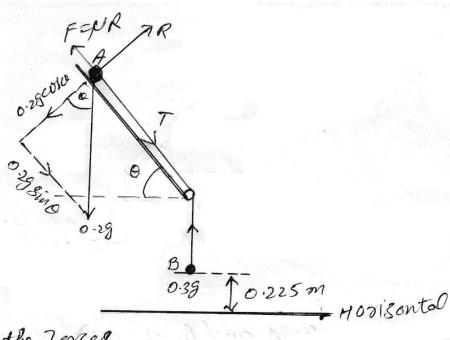

Paper 4 Mechanics

October/November 2024

Question No(7)

https://kingcambridgesolutions.com

Question No (7)


Two particles, A and B, of masses 0.2 kg and 0.3 kg respectively, are attached to the ends of a light inextensible string. The string passes over a small fixed smooth pulley which is attached to the bottom of a rough plane inclined at an angle θ to the horizontal where $\sin\theta=0.6$. Particle A lies on the plane, and particle B hangs vertically below the pulley, 0.25 m above horizontal ground. The string between A and the pulley is parallel to a line of greatest slope of the plane (see diagram). The coefficient of friction between A and the plane is $\underline{1.125}$. Particle A is released from rest.

- (a) Find the tension in the string and the magnitude of the acceleration of the particles.
- (b) When B reaches the ground, it comes to rest.

Find the total distance that A travels down the plane from when it is released until it comes to rest. You may assume that A does not reach the pulley.

Solution:

(a)

Resolve the Forces
perpardicular to plane at A

 $R = 0.29 \cos 0$ = 0.2(9.8)(0.8000)

AS 8m0206 0 = 8m(0.6) = 0.6435 cos 0.6435 = 0.8000

R= 1.568

AS F = MR = (1.125)(1.568)

-p=1.125

F = 1.764

along the inclined plane Net terces = ma $T + 0.29 \sin 0 - F = 0.29$ T + (0.2)9 (0.6) - F = 0.29

DATE:-	(25)
- X- X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-	T+1.176-1.764=0.2a
	7-0.588=0.2 ->0
A	et particle B, resolve the Jerres
	vestically
2 1/ +	0.39-T=0.3 a→@
2) 2 1	Adding 0 80
	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	0.39-0.588=0.59
	2.94-0.588=0.59
(24-07 mg	$\alpha = \frac{2.352}{0.0}$
	$Q = 4.7 \text{m/s}^2$
1	put a = 4.7 45 (1)
	T- 0.588 = 0.2 (4.7)
Junior	T=0.588+0.2(4.7)
- Tools	Then strong become stocked to
	become 3cm.

The acceleration is seeme for particles A and B, when particle B moves to ground. por particle B, given data Initial velocity, u zo ,5=0.25 a=4.7 (70m porta) usng v2= u2+2018 v2=(0)2+2(4.7)(0.25) V= 2.4 when the particle B but The ground Then string become slack and tension become zero.

DATE	= Astona by starta (2) was by growth =
3	at the time of slack.
	at the time of slack.
	net force at A = 0.2a
	0.29 bin 0 - PR = 0-2 a
	1.125)(1.56x) = 0-29 R=150
	org smo - Cross Franto
	0.29 (0.6) - 1.764 Z OZA
3	$a = \frac{1.176 - 1.764}{0.2}$
	0.2
	$a = -3 m/s^2$
	NOW using the Equation of motion.
3	$v^2 = u^2 + 2a8$
3	
	(final velocity of B become the Initial
	velocity of A when hitting ground or at the time of slacks and Final
	velocity of A becomes 0)
	(0) = 2.4 + d(0)
	$(0)^2 = 2.4 + 3(-3) $ \$ $8 = \frac{2.4}{6} = 0.4$
	Total distance covered by A is
3	

= distance by A (when B moves to ground)+ distance by A, at slach time

= 0.25 + 0.4 $S = 0.65 \, \text{m}$