Cambridge International AS & A Level

Mathematics

9709/42

Paper 4 Mechanics

May/June 2024

Question No(4)

http://kingcambridgesolutions.com

Question No (4)

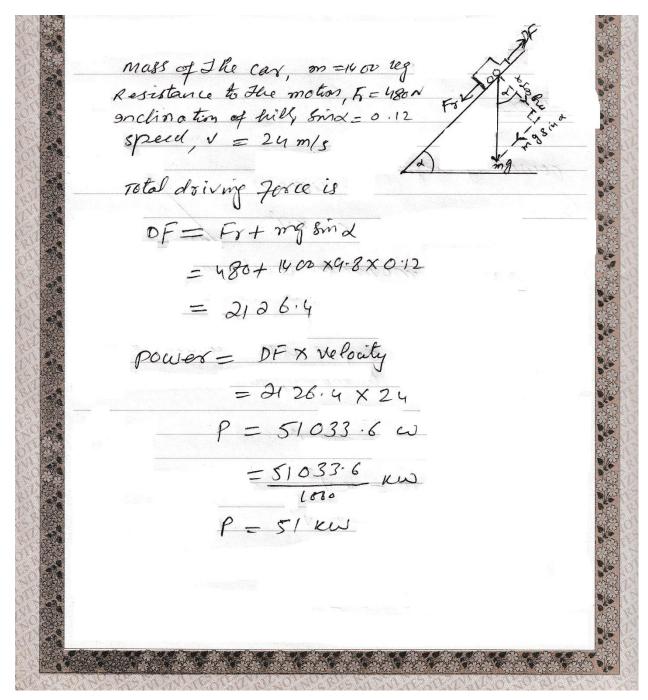
A car has mass 1400 kg. When the speed of the car is $v m s^{-1}$ the magnitude of the resistance to motion is $k v^2$ N where k is a constant.

- (a) The car moves at a constant speed of 24 $\,m\,s^{-1}\,$ up a hill inclined at an angle of $\,\alpha\,$ to the horizontal where $\,\sin\alpha\,=\,0.12$. At this speed the magnitude of the resistance to motion is 480 N.
- (i) Find the value of k.
- (ii) Find the power of the car's engine.
- (b) The car now moves at a constant speed on a straight level road.

Given that its engine is working at 54 kW, find this speed.

Solution:

(a)(i)


Given data

$$m = 1400 \text{ kg}$$
 $F_8 = K V^2 N$
 $V = 24 \text{ m/s}'$

A)

 $F_8 = K V^2$
 $\Rightarrow 480 = K(2h)^2 = 480$
 $K = \frac{680}{(2h)^2} = \frac{576}{576} = \frac{5}{6}$

(a)(ii)

Given

powers of Engine, $P = 54 \times W$ =54000 W

Resultance to motion, $R = KV^2$ As the car is moving on Level made, so the gravitational component is not present.

Car is moving at constant speed, the power provided by the engine is used to overcome

the resultance to motion, so $P = R \times V$ $54000 = KV^2$ $54000 = 56 V^3$ $V = 40.2 m 3^1$