Cambridge International AS & A Level

Mathematics

9709/12

Paper 1 Pure Mathematics 1

May/June 2025

Question No (9)

http://kingcambridgesolutions.com

Question No (9)

The equation of a curve is such that $\frac{d^2y}{dx^2}=-\frac{24}{x^3}$. It is given that the curve has a stationary point at (-2,19).

- (a) Find an expression for $\frac{dy}{dx}$.
- (b) Find the x-coordinate of the other stationary point of the curve, and determine the nature of this stationary point.
- (c) Find the equation of the curve.
- (d) Find the equation of the normal to the curve at the point where $\frac{dy}{dx}=-\frac{9}{4}$ and x is positive. Express your answer in the form px+qy+r=0, where p, q and r are integers.

Solution:

(a)

On Next page

given equation of curve

$$\frac{313}{312} = -\frac{24}{23} \implies 0$$

stationary point (-2, 19)

$$\int \frac{313}{312} = \int -\frac{24}{23} = \int -24 \times 3$$

$$\frac{31}{312} = -24 \times 3 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1 + 1$$

$$\frac{31}{312} = -24 \times 4 + 1$$

$$\frac{31}{312} = -24$$

(b) ~	ses one sh	all Jurd	x-coords	wate
et et	second s	totionary ,	pourt.	
	put			
	da =	0		
	da			
	$\Rightarrow \frac{12}{2^2}$	3 20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
			1. 2.1	
	[2	=3		
			13	
		= 4	Na.	
		= ±2		
	e cond state	tionary pe	out is 2	
Nou	sure cheek	b it nat	iese	
	2/4	2 4		
as as	3/y = -	23		*
	de	x=2		
	27	24		
		(2)3		*
	<i>Oy 1</i>	- 24 3		
	214	8		
	$\frac{\partial J}{\partial n^2} < 0$ This is r	20		
80	This is a	n par mum	Stationary	point.
30	, v, ,		<u> </u>	

(c) NOW we shall Find out The Equation of The curve.

AS

$$\frac{ds}{dn} = 12 \dot{\cancel{z}}^2 - 3$$

$$separate variables.$$

$$dy = (12 \dot{\cancel{z}}^2 - 3) dn$$

$$\int dy = \int (2x^2 - 3) dx$$

$$J = 12 \frac{x}{x} - 3x + d$$

$$d = 12 \frac{1}{-1} - 3x + d$$

$$y = -\frac{12}{x} - 3x + d \rightarrow 0$$

$$19 = -\frac{12}{2} - 3(-2) + d$$

$$d = 19 - 12 = 7$$

So equation O be comes

$$y = -\frac{12}{x} - 3x + 7$$

(d)	Given $\frac{dy}{dx} = -\frac{9}{4}$
_	$=) \frac{12}{x^2} - 3 = -\frac{9}{4}$ $= \frac{12}{x^2} - 3$
	$\frac{12}{2^2} = -\frac{9}{4} + 3$
	$\frac{12}{x^2} = \frac{3}{4}$
an Marsha • 14.	$\chi^2 = \frac{12\pi 4}{3}$
	$\chi^2 = 16$
	$\chi = \pm 4$
	x = 4 (question statement)
	43 in part (c)
	$y = \frac{12}{x} - 3x + 7$
	at $\chi = 4$
	$y = -\frac{12}{4} - 3(4) + 7$
	=-3-12+1
	y = -8
	point is (4,-8) gradient q curve dis = -9/4 (given) In
	dis = 9, (given)

gradient 9 normal

$$\frac{ds}{dx} = -\frac{1}{-9/4} = \frac{4}{9} = m_1 \times m_2 = -\frac{4}{-9/4}$$

Equation 9 normal by using $\frac{dy}{dx} = \frac{4}{9}$

and $p(\frac{4}{1}-8)$
 $y-y=\frac{4}{9}(x-x)$
 $y+8=\frac{4}{9}(x-4)$
 $q(\frac{y}{8})=q(\frac{y}{9}-16)$
 $qy+7z=\frac{4}{9}-16$
 $qx-9y-16-7z=6$
 $4x-9y-88=6$