Cambridge International AS & A Level

Mathematics

9709

Paper 1 Pure Mathematics 1

Topic 1-Quadratics

Question No (11)

http://kingcambridgesolutions.com

WhatsApp +923454231525

Rs:300/Paper

Question No (11)

The straight line y = mx + 14 is a tangent to the curve $y = \frac{12}{x} + 2$ at the point P. Find the value of the constant m and the coordinates of P.

Solution

Equation of line

$$y = mx + iu \rightarrow 0$$

Equation of come

$$y = \frac{12}{x} + 2 \rightarrow 0$$

Salving 0 8 0 8 imultaneously

$$mx + iy = \frac{12}{x} + 2$$

$$x (mx + iy) = 12 + 2x$$

$$mx^2 + iy x = 12 + 2x$$

$$mx^2 + iy x - 2x - 12 = 0$$

$$mx^2 + 12x - 12 = 0 \rightarrow 0$$

As line is tangent to come

also eximinant $b^2 - 4ac = 0$

$$(12)^2 - h(m)(-12) = 0$$

$$144 + 48m = 0$$

$$43m = -144$$

$$m = -144$$

$$m = -144$$

$$m = -3$$

Howare Find The point f

put $m = -3$ in (3)

$-3x^{2}+12x-12=0$	
-3(2 ² -4x+4)20	
$\alpha^2 - 4\alpha + 4 = 0$	
$(2(-2)^2=0$	
$\Rightarrow \chi - 2 = 0$	
$\chi = 2$	
$- put \chi = 2 in$	
$y = \frac{12}{2} + 2$	
$=\frac{12}{2}+2$	
= 6+2	
y = 8	
: p(2,8)	