Cambridge International AS & A Level

Mathematics

9709

Paper 1 Pure Mathematics 1

Topic 2-Functions

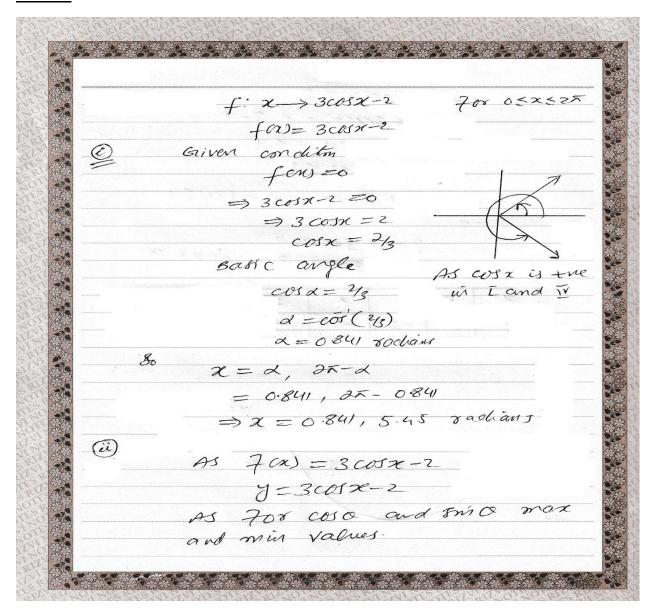
Question No (18)

http://kingcambridgesolutions.com

WhatsApp +923454231525

Rs:300/Paper

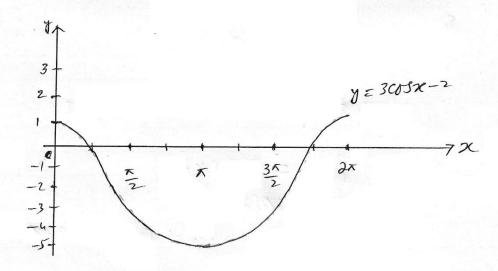
Question No (18)


A function f is defined by $f: x \to 3\cos x - 2$ for $0 \le x \le 2$.

- (i) Solve the equation f(x) = 0.
- (ii) Find the range of f.
- (iii) Sketch the graph of y = f(x).

A function g is defined by g: $x \to 3cosx - 2$ for $0 \le k \le 2$.

- (iv) State the maximum value of k for which g has an inverse.
- (v) Obtain an expression for $g^{-1}(x)$...


Solution

 $-1 \le \cos x \le 1$ $-3 \le 3 \cos x \le 3$ $-3 - 2 \le 3 \cos x - 2 \le 3 - 2$ $-5 \le 3 \cos x - 2 \le 1$ $-5 \le f \cot \le 1$ $- \sin \theta \ne 7 \ ii \ - 5 \le f \cot \le 1$

 $7(x) = 3\cos x - 2$ $y = 3\cos x - 2$ $0 \le x \le 2x$

X	0	X-2	x	3×	27
y	1	-28	-5	-2	1

	$g: x \rightarrow 3\cos x - 2 \text{for } 0 \le x \le K$ $gen) = 3\cos x - 2$
From	n graph we can see that maximum
(se	cause up to a Horizontal Cine
(V)	gen) = 3 cosx - 2
	$y = 3\cos x - 2$ = $y = \sin x$
	$\frac{9+2}{3} = \cos x$
	$\cos x = \frac{9+2}{3}$
	$\chi = \cos^2\left(\frac{y+2}{3}\right)$
	$g'(y) = cos'\left(\frac{3+2}{3}\right)$ $seplacing y by x$ $g'(x) = cos'\left(\frac{x+2}{3}\right)$
	$g'(x) = cos'\left(\frac{x+2}{3}\right)$