Cambridge International AS & A Level

Mathematics

9709

Paper 1 Pure Mathematics 1

Topic 2-Functions

Question No (26)

http://kingcambridgesolutions.com

WhatsApp +923454231525

Rs:300/Paper

Question No (26)

A function f is defined by $f: x \to 5-2 \sin 2x \ for \ 0 \le x \le \pi$

- (i) Find the range of f
- (ii) Sketch the graph of y = f(x).
- (iii) Solve the equation f(x) = 6, giving answers in terms of π .

The function g is defined by $g: x \rightarrow 5-2\sin 2x$ for $0 \le x \le k$, where k is a constant.

- (iv) State the largest value of k for which g has an inverse.
- (v) For this value of k, find an expression for $g^{-1}(x)$.

Solution

$$f: x \rightarrow 5-2\sin 3x \qquad 70x \cos x \leq x$$

$$f: x \rightarrow 5-2\sin 3x$$

$$f(x) = 5-2\sin 2x$$

$$f \cos x = 5-2\sin 2x$$

$$f \cos x = 7\cos x \leq 1$$

$$-1 \leq \sin x \leq 1$$

$$-1 \leq \sin x \leq 1$$

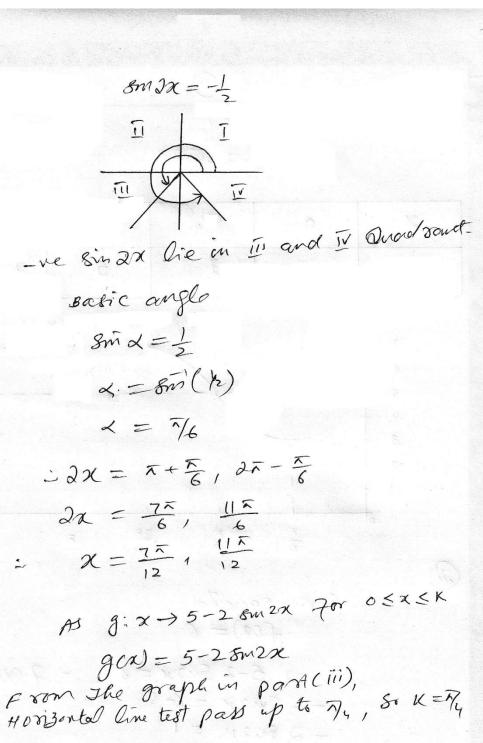
$$-1 \leq \sin x \leq 1$$

$$\sin x = 1$$

$$-1 \leq \sin x \leq 1$$

$$\sin x = 1$$

$$-1 \leq \sin x \leq 1$$


$$\cos x = 2 + 3$$

$$-1 \leq \sin x \leq 3 + 3$$

$$-1 \leq \sin x \leq 3 + 3$$

$$-1 \leq \cos x$$

	y = 3	7(x) 5-2 8mi 20	(0<×5	~
×	Ò	74	7/2	3×	~
f(x)	5	3	5	7	5
	7 4	F. T.	35 ~		->
	⇒ 5	quackor (12) = 6 6-2 5m2x n2x = 6-	=6	= 7-cv)	L5-28

$D \qquad \text{as} g(0) = 5 - 2 \sin \alpha x$
=> y= 5-28m2x = g(x)=y
28m2x = 5-3
$8m2x = \frac{5-9}{2}$
$\partial x = 8m\left(\frac{5-5}{2}\right)$
$z=\frac{1}{2}sn\left(\frac{5-9}{2}\right)$
$g(y) = \frac{1}{2} g(y) = \frac{1}{2} g(y) = \frac{1}{2} g(y)$
replace y by x
$\frac{1}{3}(x) = \frac{1}{2} \sin\left(\frac{5-x}{2}\right)$