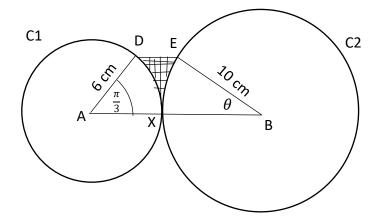
Cambridge International AS & A Level

Mathematics

9709

Paper 1 Pure Mathematics 1

Topic 4-Circular Measure

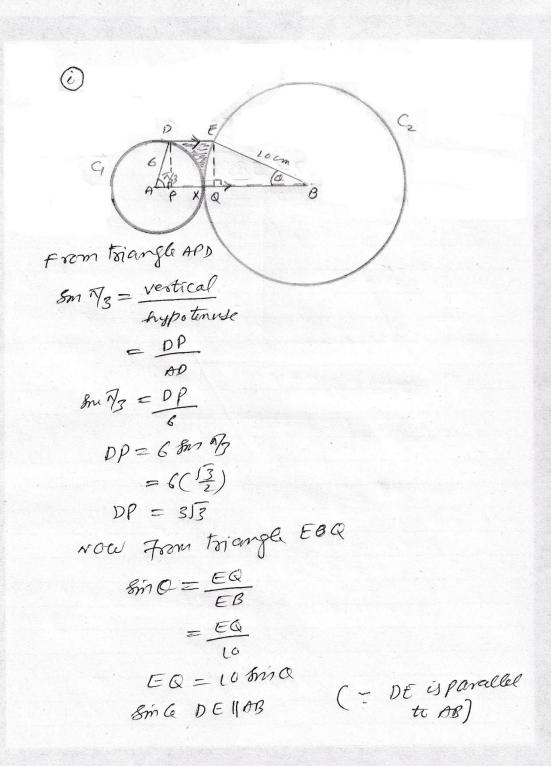

Question No (9)

http://kingcambridgesolutions.com

WhatsApp +923454231525

Rs:300/Paper

Question No (9)



The diagram shows a circle C1 touching a circle C2 at a point X. Circle C1 has center A and radius 6 cm, and circle C2 has center B and radius 10 cm. Points D and E lie on C1 and C2 respectively and DE is parallel to AB. Angle DAX = $\frac{\pi}{3}$ radians and angle EBX = θ radians.

- (i) By considering the perpendicular distances of D and E from AB, show that the exact value of $\theta \ \ is \ \ sin^{-1}\left(\frac{3\sqrt{3}}{10}\right) \ .$
- (ii) Find the perimeter of the shaded region, correct to 4 significant figures

Solution

On Next page

	2322	
DP = EQ		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
3/3 = 10 sma		and EQ
$8m0 = \frac{3)3}{10}$		= 10 mo
$0 = 8m'(\frac{313}{10})$	proved.	
(ii) NOW me Jund on The Shaded regu	et The pe	simeter of
The Shaded regu	M	
as from part (
0 = 8m (-	3)3	
= 0.546	gadians.	
Arc length DX=re	2	- S=ra
=6(7)	3)	
= 27		
Arc Length of Ex =		- S=20
	(0.546)	· 0=0546
= 5	46 cm	
From top angle At	D .	
$= S$ $= From to angle A6$ $\cos(73) = 1$ $\cos(73) = 1$	pase	
	hypolenos	
$\cos(7/3) = -$	6	

$$AP = 6 \cos(\frac{\pi}{6})$$

$$= 6 (n)$$

$$AP = 3 cm$$

$$PRIM \triangle EQB$$

$$COS(0.546) = \frac{BAB}{App tank}$$

$$COS(0.546) = \frac{QB}{App tank}$$

$$QB = 10 \cos(0.546)$$

$$QB = 8.54 (cm)$$

$$PROM 7 ig$$

$$AB = AX + XB$$

$$= 6 + 10$$

$$AB = 16 cm$$

$$7 rom 7 ig$$

$$AB = AP + PQ + QB$$

$$AB = AP + PB + QB$$

$$AB = AP + DE + QB$$

$$DE = AB - AP - QB$$

$$= 16 - 3 - 8.546$$

$$DE = 4.454 cm$$

$$DE = 4.454 cm$$